login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051044 Odd values of the PartitionsQ function A000009. 3
1, 1, 3, 5, 15, 27, 89, 165, 585, 1113, 4097, 7917, 29927, 58499, 225585, 444793, 1741521, 3457027, 13699699, 27342421, 109420549, 219358315, 884987529, 1780751883, 7233519619, 14600965705, 59656252987, 120742510607 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A000009(n) is odd iff n is of the form k*(3*k - 1)/2 or k*(3*k + 1)/2. - Jonathan Vos Post, Jun 18 2005

Eric W. Weisstein comments: "The values of n for which a(n) is prime are 3, 4, 5, 7, 22, 70, 100, 495, 1247, 2072, 320397, ... (A035359), with no others for n <= 3015000 (Weisstein, May 06 2000). These values correspond to 2, 2, 3, 5, 89, 29927, 444793, 602644050950309, ... (A051005). It is not known if a(n) is infinitely often prime, but Gordon and Ono (1997) proved that it is 'almost always' divisible by any given power of 2 (1997)."

Semiprime odd values of the PartitionsQ function A000009 begin: a(4) = 15 = 3 * 5, a(10) = 4097 = 17 * 241, a(19) = 27342421 = 389 * 70289, a(23) = 1780751883 = 3 * 593583961, a(27) = 120742510607 = 31 * 3894919697. - Jonathan Vos Post, Jun 18 2005

LINKS

Table of n, a(n) for n=0..27.

Eric Weisstein's World of Mathematics, Partition Function Q Congruences

FORMULA

a(n) = A000009(A001318(n)). - Reinhard Zumkeller, Apr 22 2006

MATHEMATICA

PartitionsQ /@ Table[n*((n + 1)/6), {n, Select[Range[50], Mod[#, 3] != 1 & ]}] (* Jean-Fran├žois Alcover, Oct 31 2012, after Reinhard Zumkeller *)

CROSSREFS

Cf. A000009, A035359, A051005, A118303.

Sequence in context: A274638 A146244 A146457 * A003536 A284031 A284410

Adjacent sequences:  A051041 A051042 A051043 * A051045 A051046 A051047

KEYWORD

nonn

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 07:12 EDT 2019. Contains 321468 sequences. (Running on oeis4.)