login
Fifth powers of primes.
71

%I #86 Aug 11 2024 21:32:05

%S 32,243,3125,16807,161051,371293,1419857,2476099,6436343,20511149,

%T 28629151,69343957,115856201,147008443,229345007,418195493,714924299,

%U 844596301,1350125107,1804229351,2073071593,3077056399,3939040643,5584059449,8587340257,10510100501

%N Fifth powers of primes.

%C Numbers k such that A062799(k) = 5.

%C Let r(n) = (a(n)+1)/(a(n)-1) if a(n) mod 4 = 3, (a(n)-1)/(a(n)+1) otherwise; then Product_{n>=1} r(n) = (31/33) * (244/242) * (3124/3126) * (16808/16806) * ... = 246016/259875. - _Dimitris Valianatos_, Mar 09 2020

%H T. D. Noe, <a href="/A050997/b050997.txt">Table of n, a(n) for n = 1..1000</a>

%H Xavier Gourdon and Pascal Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html">Some Constants from Number theory</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimePower.html">MathWorld: Prime Power</a>.

%H <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>

%F A056595(a(n)) = 3. - _Reinhard Zumkeller_, Aug 15 2011

%F Sum_{n>=1} 1/a(n) = P(5) = 0.0357550174... (A085965). - _Amiram Eldar_, Jul 27 2020

%F From _Amiram Eldar_, Jan 23 2021: (Start)

%F Product_{n>=1} (1 + 1/a(n)) = zeta(5)/zeta(10) (A157291).

%F Product_{n>=1} (1 - 1/a(n)) = 1/zeta(5) = 1/A013663. (End)

%t Array[Prime[ # ]^5 &, 30] (* _Vladimir Joseph Stephan Orlovsky_, May 01 2008 *)

%o (PARI) vector(66,n,prime(n)^5)

%o (Magma) [p^5: p in PrimesUpTo(300)]; // _Vincenzo Librandi_, Mar 27 2014

%o (Haskell)

%o a050997 = (^ 5) . a000040

%o a050997_list = map (^ 5) a000040_list

%o -- _Reinhard Zumkeller_, Jun 03 2015

%Y Cf. A000040, A001248, A030078, A030514, A085965, A131992, A131993, A013663, A157291.

%Y Cf. A258602.

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_