login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050922 Triangle in which n-th row gives prime factors of n-th Fermat number 2^(2^n)+1. 8
3, 5, 17, 257, 65537, 641, 6700417, 274177, 67280421310721, 59649589127497217, 5704689200685129054721, 1238926361552897, 93461639715357977769163558199606896584051237541638188580280321 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Alternatively, list of prime factors of terms of A001317 in order of their first appearance. - Labos Elemer, Jan 21 2002

Comments from T. D. Noe, Jan 29 2009 (Start): That these two definitions give the same sequence follows from the fact (stated as a formula in A001317) that A001317(n) is the product of Fermat numbers F(i) according to which bits of n are set.

For instance, for n=41, the binary representation of n is 101001, which has bits 0, 3 and 5 set. A001317(n) = 3311419785987 = 3*257*4294967297 = F(0)*F(3)*F(5).

This factorization also explains why the "first 31 numbers give odd-sided constructible polygons". I think Hewgill first noticed this factorization. (End)

REFERENCES

M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2nd. ed., 2001; see p. 3.

LINKS

Table of n, a(n) for n=0..12.

J. Bernheiden, Fermat Numbers (Text in German)

R. P. Brent, Factorization of the tenth Fermat number

R. P. Brent, Factorization of the eleventh Fermat number

R. P. Brent, Succint proofs of primality for the factors of some Fermat numbers

R. P. Brent & J. M. Pollard, Factorization of the eighth Fermat number

R. P. Brent et al., Three new factors of Fermat numbers

C. K. Caldwell, The Prime Glossary, Fermat divisor

Wilfrid Keller, Prime factors k.2^n + 1 of Fermat numbers F_m

R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, Arxiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012

R. Munafo, Notes on Fermat numbers

Eric Weisstein's World of Mathematics, Fermat Number

EXAMPLE

Triangle begins:

3;

5;

17;

257;

65537;

641, 6700417;

274177, 67280421310721;

59649589127497217, 5704689200685129054721;

1238926361552897, 93461639715357977769163558199606896584051237541638188580280321; ...

A001317(127) = 3.5.17.257.65537.641.6700417.274177.6728042130721, A001317(128) = 59649589127497217.5704689200685129054721. See also A050922. Compare with A053576, where 2 and A000215 appear as prime factors. - Labos Elemer, Jan 21 2002

MATHEMATICA

Flatten[Transpose[FactorInteger[#]][[1]]&/@Table[2^(2^n)+1, {n, 0, 8}]]  Harvey P. Dale, May 18 2012

CROSSREFS

Cf. A000215, A019434, A093179.

Cf. A001317, A001316, A003401, A045544, A053576, A050922.

Sequence in context: A125045 A093179 A067387 * A070592 A232720 A000215

Adjacent sequences:  A050919 A050920 A050921 * A050923 A050924 A050925

KEYWORD

nonn,tabf,nice

AUTHOR

N. J. A. Sloane, Dec 30 1999

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Apr 13 2000.

Edited by N. J. A. Sloane, Jan 31 2009 at the suggestion of T. D. Noe

Link to Munafo webpage fixed by Robert Munafo, Dec 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 22 06:20 EDT 2014. Contains 244801 sequences.