login
A050806
Inserting any digit between adjacent digits of prime p produces exactly 1 new prime.
3
101, 149, 163, 241, 269, 271, 317, 347, 367, 397, 409, 419, 443, 487, 509, 541, 587, 601, 641, 761, 787, 811, 821, 863, 907, 919, 1439, 1481, 1663, 1877, 2089, 2111, 2579, 2593, 2671, 2819, 2971, 3121, 3457, 3463, 3571, 3643, 3659, 3769, 3917, 4001
OFFSET
1,1
LINKS
EXAMPLE
101 yields only one prime using digit '6' -> 1(6)0(6)1 -> prime 16061.
MATHEMATICA
aQ[n_]:=Plus@@Boole[PrimeQ[Table[FromDigits[Riffle[IntegerDigits[n], k]], {k, 0, 9}]]]==1; Select[Prime[Range[5, 555]], aQ[#]&] (* Jayanta Basu, May 30 2013 *)
PROG
(Haskell)
import Data.List (intersperse)
a050806 n = a050806_list !! (n-1)
a050806_list = filter ((== 1) . sum . f) a000040_list where
f p = map (i $ show p) "0123456789"
i ps d = a010051' (read $ intersperse d ps :: Integer)
-- Reinhard Zumkeller, May 07 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Oct 15 1999
EXTENSIONS
Offset corrected by Reinhard Zumkeller, May 07 2013
STATUS
approved