login
a(n) = Sum_{d|n, n/d=3 mod 4} d^2.
7

%I #21 Nov 06 2023 02:17:48

%S 0,0,1,0,0,4,1,0,9,0,1,16,0,4,26,0,0,36,1,0,58,4,1,64,0,0,82,16,0,104,

%T 1,0,130,0,26,144,0,4,170,0,0,232,1,16,234,4,1,256,49,0,290,0,0,328,

%U 26,64,370,0,1,416,0,4,523,0,0,520,1,0,538,104,1,576,0

%N a(n) = Sum_{d|n, n/d=3 mod 4} d^2.

%H Reinhard Zumkeller, <a href="/A050465/b050465.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A050461(n) - A050470(n). - _Reinhard Zumkeller_, Mar 06 2012

%F From _Amiram Eldar_, Nov 05 2023: (Start)

%F a(n) = A076577(n) - A050461(n).

%F a(n) = (A076577(n) - A050470(n))/2.

%F Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 7*zeta(3)/16 - Pi^3/64 = 0.041426822002... . (End)

%t a[n_] := DivisorSum[n, #^2 &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* _Amiram Eldar_, Nov 05 2023 *)

%o (Haskell)

%o a050465 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 3]

%o -- _Reinhard Zumkeller_, Mar 06 2012

%o (PARI) a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^2); \\ _Amiram Eldar_, Nov 05 2023

%Y Cf. A002117, A027750, A050461, A050470, A076577.

%Y Cf. A050464, A050466, A050467.

%K nonn,easy

%O 1,6

%A _N. J. A. Sloane_, Dec 23 1999

%E Offset fixed by _Reinhard Zumkeller_, Mar 06 2012