This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050409 Truncated square pyramid numbers: a(n) = Sum_{k = n..2*n} k^2. 12
 0, 5, 29, 86, 190, 355, 595, 924, 1356, 1905, 2585, 3410, 4394, 5551, 6895, 8440, 10200, 12189, 14421, 16910, 19670, 22715, 26059, 29716, 33700, 38025, 42705, 47754, 53186, 59015, 65255, 71920, 79024, 86581, 94605, 103110, 112110, 121619 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013 M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = n*(n+1)*(14*n+1)/6. a(n) = A132121(n,4) for n>3. - Reinhard Zumkeller, Aug 12 2007 From Bruno Berselli, Feb 11 2011: (Start) G.f.: x*(5+9*x)/(1-x)^4. a(n) = A129371(2*n). (End) a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 22 2012 MAPLE seq(add((n+k)^2, k=0..n), n=0..37); # Zerinvary Lajos, Dec 01 2006 MATHEMATICA LinearRecurrence[{4, -6, 4, -1}, {0, 5, 29, 86}, 40] (* Vincenzo Librandi, Jun 22 2012 *) PROG (MAGMA) [&+[k^2: k in [n..2*n]]: n in [0..37]]; // Bruno Berselli, Feb 11 2011 (PARI) a(n)=sum(k=n, n+n, k^2) (MAGMA) I:=[0, 5, 29, 86]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 22 2012 CROSSREFS Cf. A000330, A033994, A129371, A132112, A132121, A132124. Cf. A225144. [Bruno Berselli, Jun 06 2013] Cf. A045943: Sum_{k = n..2*n} k. Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2. Sequence in context: A154412 A236075 A272650 * A111937 A215850 A190585 Adjacent sequences:  A050406 A050407 A050408 * A050410 A050411 A050412 KEYWORD nonn,easy,nice AUTHOR Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 18:33 EST 2018. Contains 318150 sequences. (Running on oeis4.)