login
A050334
Number of ordered factorizations of n into numbers with an odd number of prime divisors (prime factors counted with multiplicity).
5
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 8, 1, 2, 2, 4, 1, 7, 1, 5, 2, 2, 2, 10, 1, 2, 2, 8, 1, 7, 1, 4, 4, 2, 1, 15, 1, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 18, 1, 2, 4, 8, 2, 7, 1, 4, 2, 7, 1, 23, 1, 2, 4, 4, 2, 7, 1, 15, 3, 2, 1, 18, 2, 2, 2, 8, 1, 18, 2, 4, 2, 2, 2, 28, 1, 4, 4
OFFSET
1,6
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
LINKS
FORMULA
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of A026424 (essentially A066829).
a(p^k) = A000045(k).
a(A002110(k)) = A006154(k).
a(n) = A050335(A101296(n)). - R. J. Mathar, May 26 2017
EXAMPLE
From R. J. Mathar, May 25 2017: (Start)
a(p) = 1: factorizations p.
a(p^2) = 1: factorizations p*p.
a(p^3) = 2: factorizations p^3, p*p*p.
a(p^4) = 3: factorizations p^3*p, p*p^3, p*p*p*p.
a(p^5) = 5: factorizations p^5, p^3*p*p, p*p^3*p, p*p*p^3, p*p*p*p*p.
a(p*q) = 2: factorizations p*q, q*p. (End)
MAPLE
read(transforms):
A066829m := proc(n)
if n = 1 or isA026424(n) then
1;
else
0;
end if;
end proc:
[1, seq(-A066829m(n), n=2..10000)] ;
DIRICHLETi(%) ; # R. J. Mathar, May 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved