login
T(2n+5,n), array T as in A051168; a count of Lyndon words.
3

%I #19 Oct 28 2021 10:56:40

%S 0,1,4,15,55,200,728,2652,9690,35530,130750,482885,1789515,6653325,

%T 24812400,92798375,347993910,1308233790,4929576600,18615637950,

%U 70441574000,267058714626,1014283603024,3858687620200,14702930414900

%N T(2n+5,n), array T as in A051168; a count of Lyndon words.

%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>

%F From _Petros Hadjicostas_, Dec 03 2017: (Start)

%F a(n) = (1/(2*n+5))*Sum_{d|gcd(n,5)} mu(d)*binomial((2*n+5)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)

%F a(n) = (1/(2*n+5))*(binomial(2*n+5, n) - binomial((2*n/5)+1, n/5)) if 5|n; = (1/(2*n+5))*binomial(2*n+5, n) otherwise.

%F (End)

%p A050183 := proc(n)

%p binomial(2*n+5,n) ;

%p if modp(n,5) = 0 then

%p %-binomial(2*n/5+1,n/5) ;

%p end if;

%p %/(2*n+5) ;

%p end proc:

%p seq(A050183(n),n=0..40) ; # _R. J. Mathar_, Oct 28 2021

%o (PARI) a(n) = (1/(2*n+5))*sumdiv(gcd(n,5), d, moebius(d)*binomial((2*n+5)/d, n/d)); \\ _Michel Marcus_, Dec 05 2017

%Y A diagonal of the square array described in A051168.

%K nonn

%O 0,3

%A _Clark Kimberling_