The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050157 T(n, k) = S(2n, n, k) for 0<=k<=n and n>=0, where S(p, q, r) is the number of upright paths from (0, 0) to (p, p-q) that do not rise above the line y = x-r. 13
 1, 1, 2, 2, 5, 6, 5, 14, 19, 20, 14, 42, 62, 69, 70, 42, 132, 207, 242, 251, 252, 132, 429, 704, 858, 912, 923, 924, 429, 1430, 2431, 3068, 3341, 3418, 3431, 3432, 1430, 4862, 8502, 11050, 12310, 12750, 12854, 12869, 12870 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let V = (e(1),...,e(n)) consist of q 1's and p-q 0's; let V(h) = (e(1),...,e(h)) and m(h) = (#1's in V(h)) - (#0's in V(h)) for h=1,...,n. Then S(p,q,r) is the number of V having r >= max{m(h)}. LINKS FORMULA T(n, k) = Sum_{0<=j<=k} t(n, j), array t as in A039599. T(n, k) = binomial(2*n, n) - binomial(2*n, n+k+1). - Peter Luschny, Dec 21 2017 EXAMPLE The triangle starts:                                 1                               1, 2                             2, 5, 6                          5, 14, 19, 20                        14, 42, 62, 69, 70                   42, 132, 207, 242, 251, 252                132, 429, 704, 858, 912, 923, 924 MAPLE A050157 := (n, k) -> binomial(2*n, n) - binomial(2*n, n+k+1): seq(seq(A050157(n, k), k=0..n), n=0..10); # Peter Luschny, Dec 21 2017 CROSSREFS T(n, 0) = A000108(n). T(n, 1) = A000108(n+1). T(n, n) = A000984(n). T(n, n-1) = A030662(n). Row sums are A296771. Cf. A039599, A050163. Sequence in context: A233740 A266595 A120406 * A209503 A209744 A209465 Adjacent sequences:  A050154 A050155 A050156 * A050158 A050159 A050160 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 03:04 EDT 2020. Contains 337291 sequences. (Running on oeis4.)