login
A050150
Odd numbers with prime number of divisors.
9
3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
OFFSET
1,1
COMMENTS
Here but not in A062090: [729, 15625, 59049, 117649, 531441]; in A062090 but not here: [1, 6561, 390625]. - Klaus Brockhaus, Nov 01 2001
FORMULA
Numbers of the form p^e where p is an odd prime and e+1 is a prime.
A010051(A100995(a(n)) + 1) = 1. - Reinhard Zumkeller, Aug 16 2013
a(n) ~ n log n. - Charles R Greathouse IV, Aug 28 2013
EXAMPLE
Numbers of the form p^6 for example (such as 3^6 = 729) are here but not in A062090.
MATHEMATICA
Select[ Range[1, 250, 2], PrimeQ[ Length[ Divisors[ # ]]] & ]
Select[Range[1, 799, 2], PrimeQ[DivisorSigma[0, #]]&] (* Harvey P. Dale, Jun 22 2011 *)
PROG
(PARI) forstep(n=1, 1000, 2, if(isprime(numdiv(n)), print1(n, ", ")))
(PARI) is(n)=n%2 && isprime(isprimepower(n)+1) \\ Charles R Greathouse IV, Aug 28 2013
(Haskell)
a050150 n = a050150_list !! (n-1)
a050150_list = filter ((== 1) . a010051 . (+ 1) . a100995) [1, 3 ..]
-- Reinhard Zumkeller, Aug 16 2013
(Python)
from sympy import divisor_count, isprime
def ok(n): return n and n%2 and isprime(divisor_count(n))
print([k for k in range(250) if ok(k)]) # Michael S. Branicky, Jul 05 2022
CROSSREFS
Cf. A062090 (a different sequence).
Sequence in context: A308838 A080429 A326581 * A062090 A358975 A345898
KEYWORD
easy,nonn,nice
AUTHOR
Jason Earls, Jul 04 2001
EXTENSIONS
More terms from Jud McCranie, Oct 31 2001
STATUS
approved