This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050140 a(n) = 2*floor(n*phi)-n, where phi = (1+sqrt(5))/2. 7
 1, 4, 5, 8, 11, 12, 15, 16, 19, 22, 23, 26, 29, 30, 33, 34, 37, 40, 41, 44, 45, 48, 51, 52, 55, 58, 59, 62, 63, 66, 69, 70, 73, 76, 77, 80, 81, 84, 87, 88, 91, 92, 95, 98, 99, 102, 105, 106, 109, 110, 113, 116, 117, 120, 121, 124, 127, 128, 131, 134, 135, 138, 139 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Old name was a(n) = last number in repeating block in continued fraction for n*phi. REFERENCES Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, 101-103. LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 J.-P. Allouche, F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018. FORMULA a(n) = -n + 2*floor(n*phi). a(n) = floor(n*phi) + floor(n*sigma) where phi = (sqrt(5)+1)/2 and sigma = (sqrt(5)-1)/2. a(n) = last number in repeating block in continued fraction for n*phi. MATHEMATICA Table[-n+2Floor[n*GoldenRatio], {n, 1, 100}] PROG (PARI) for(n=1, 50, print1(-n + 2*floor(n*(1+sqrt(5))/2), ", ")) \\ G. C. Greubel, Oct 15 2017 (MAGMA) [-n + 2*Floor(n*(1+Sqrt(5))/2): n in [1..50]]; // G. C. Greubel, Oct 15 2017 CROSSREFS Cf. A000201, A001622, A005206, A050141, A005614, A001350. Sequence in context: A241413 A056721 A057479 * A190860 A191214 A047376 Adjacent sequences:  A050137 A050138 A050139 * A050141 A050142 A050143 KEYWORD nonn AUTHOR EXTENSIONS Formula and more terms from Vladeta Jovovic, Nov 23 2001 Name changed by Michel Dekking, Dec 27 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 11:26 EDT 2019. Contains 328108 sequences. (Running on oeis4.)