login
A050024
a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the smallest integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
12
1, 1, 1, 2, 3, 4, 5, 8, 13, 14, 15, 18, 23, 36, 51, 74, 125, 126, 127, 130, 135, 148, 163, 186, 237, 362, 489, 624, 787, 1024, 1513, 2300, 3813, 3814, 3815, 3818, 3823, 3836, 3851, 3874, 3925, 4050, 4177, 4312, 4475, 4712, 5201
OFFSET
1,4
LINKS
MAPLE
a := proc(n) option remember;
if n<4 then return [1, 1, 1][n] fi;
a(n-1) + a(2*(n-2) - Bits:-Iff(n-2, n-2)) end:
seq(a(n), n=1..50); Petros Hadjicostas, Nov 08 2019
MATHEMATICA
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 1}, Flatten@Table[2 k - 1, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 06 2015 *)
PROG
(PARI) lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 1; for(n=4, nn, va[n] = va[n-1] + va[2*n - 3 - 2*2^logint(n-2, 2)]); va; } \\ Petros Hadjicostas, May 03 2020
CROSSREFS
Sequence in context: A291297 A373895 A347333 * A182153 A230771 A065490
KEYWORD
nonn
EXTENSIONS
Name edited by Petros Hadjicostas, Nov 08 2019
STATUS
approved