|
|
A049989
|
|
a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.
|
|
13
|
|
|
1, 3, 6, 10, 14, 21, 26, 33, 42, 51, 58, 72, 80, 91, 107, 120, 130, 150, 161, 178, 199, 215, 228, 255, 272, 290, 316, 338, 354, 389, 406, 429, 460, 483, 508, 549, 569, 594, 630, 663, 685, 731, 754, 785, 833, 863, 888, 940, 969, 1007, 1054, 1090, 1118, 1175, 1212, 1253, 1305, 1342, 1373, 1444, 1476, 1515, 1577, 1621
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..10000
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.
Graeme McRae, Counting arithmetic sequences whose sum is n.
Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
Wikipedia, Arithmetic progression.
Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.
|
|
FORMULA
|
From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049988(k). [Note that the offset of A049988 is 0.]
G.f.: (-1 + g.f. of A049988)/(1-x). (End)
|
|
PROG
|
(PARI) seq(n)={my(w=(sqrtint(8*n+1)-1)\2+1); Vec(x/(1-x)^2 + sum(k=2, n, x^k/(1 - if(k<=w, x^(k*(k-1)/2)))/(1-x^k) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Sep 28 2019
|
|
CROSSREFS
|
Cf. A047966, A049982, A049983, A049984, A049986, A049987, A129654, A240026, A240027, A307824, A320466, A325325, A325328.
Sequence in context: A183863 A140949 A025206 * A330258 A197056 A104619
Adjacent sequences: A049986 A049987 A049988 * A049990 A049991 A049992
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
EXTENSIONS
|
More terms from Petros Hadjicostas, Sep 28 2019
|
|
STATUS
|
approved
|
|
|
|