OFFSET
1,20
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..12580
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.
Jon Maiga, Computer-generated formulas for A049986, Sequence Machine.
Graeme McRae, Counting arithmetic sequences whose sum is n.
Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
FORMULA
G.f.: Sum_{k >= 4} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 4} x^t(k)/((1 - x^k)*(1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049994(n) - A321014(n). [Listed by Sequence Machine and obviously true] - Antti Karttunen, Feb 20 2023
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved