OFFSET
1,4
LINKS
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.
Graeme McRae, Counting arithmetic sequences whose sum is n.
Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
FORMULA
From Petros Hadjicostas, Sep 29 2019: (Start)
G.f.: (g.f. of A049982)/(1-x). (End)
EXAMPLE
a(7) = 10 because we have the following arithmetic progressions of two or more positive integers, strictly increasing with sum <= n = 7: 1+2, 1+3, 1+4, 1+5, 1+6, 2+3, 2+4, 2+5, 3+4, and 1+2+3. - Petros Hadjicostas, Sep 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Petros Hadjicostas, Sep 27 2019
STATUS
approved