OFFSET
1,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..10000
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Graeme McRae, Counting arithmetic sequences whose sum is n.
Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
FORMULA
a(n) has generating function x^3/(x^3 - x - x^2 + 1) + x^6/(x^6 - x^3 - x^3 + 1) + x^10/(x^10 - x^6 - x^4 + 1) + ... = Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1), where t(k) = A000217(k) is the k-th triangular number. Term k of this generating function generates the number of arithmetic progressions of k positive integers, strictly increasing with sum n. - Graeme McRae, Feb 08 2007
From Petros Hadjicostas, Sep 27 2019: (Start)
Conjecture: a(n) = Sum_{m|n, m odd > 1} floor(2 * (n - m)/(m* (m - 1))) + Sum_{m|n} floor((n - m * (5 - (-1)^(n/m))/2 + m^2 * (1 - (-1)^(n/m)))/(2*m * (2*m - 1))).
(End)
PROG
(PARI) seq(n)={Vec(sum(k=2, (sqrtint(8*n+1)-1)\2, x^binomial(k+1, 2)/(x^binomial(k+1, 2) - x^binomial(k, 2) - x^k + 1) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Petros Hadjicostas, Sep 28 2019
STATUS
approved