login
A049980
a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum n.
25
1, 1, 2, 2, 3, 4, 4, 4, 7, 6, 6, 9, 7, 8, 13, 9, 9, 15, 10, 12, 18, 13, 12, 20, 15, 15, 23, 17, 15, 28, 16, 18, 28, 20, 22, 33, 19, 22, 33, 26, 21, 39, 22, 26, 43, 27, 24, 43, 27, 33, 44, 31, 27, 50, 34, 34, 49, 34, 30, 60, 31, 36, 57, 38, 40
OFFSET
1,3
COMMENTS
We need to find the number of pairs of positive integers (b, w) so that there is a positive integer m such that m*b + m*(m-1)*w/2 = n. - Petros Hadjicostas, Sep 27 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..10000
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
FORMULA
Conjecture: a(n) = 1 + Sum_{m|n, m odd > 1} floor(2 * (n - m)/(m* (m - 1))) + Sum_{m|n} floor((n - m * (5 - (-1)^(n/m))/2 + m^2 * (1 - (-1)^(n/m)))/(2*m * (2*m - 1))). - Petros Hadjicostas, Sep 27 2019
G.f.: x/(1-x) + Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = x/(1-x) + Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
EXAMPLE
a(6) = 4 because we have the following strictly increasing arithmetic progressions of positive integers adding up to n = 6: 6, 1+5, 2+4, and 1+2+3. - Petros Hadjicostas, Sep 27 2019
KEYWORD
nonn
STATUS
approved