login
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
0

%I #11 Nov 15 2019 23:27:17

%S 1,2,3,7,16,30,62,137,320,579,1160,2333,4712,9682,20204,43960,103412,

%T 186621,373244,746501,1493048,2986354,5973548,11950648,23916788,

%U 47916784,96103400,193326604,391133708,800210656,1672607924

%N a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.

%p s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:

%p a := proc(n) option remember; `if`(n < 4, [1, 2, 3][n],

%p s(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 3))

%p end proc:

%p seq(a(n), n = 1..40); # _Petros Hadjicostas_, Nov 15 2019

%K nonn

%O 1,2

%A _Clark Kimberling_

%E Name edited by _Petros Hadjicostas_, Nov 15 2019