The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049933 a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1. 9
 1, 1, 1, 4, 8, 19, 35, 70, 140, 349, 663, 1310, 2609, 5214, 10425, 20850, 41700, 104249, 198073, 390935, 779265, 1557231, 3113815, 6227316, 12454423, 24908776, 49817517, 99635018, 199270025, 398540046, 797080089, 1594160178, 3188320356, 7970800889, 15144521689 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS FORMULA From Petros Hadjicostas, Nov 06 2019: (Start) a(n) = a(2^ceiling(log_2(n-1)) + 2 - n) + Sum_{i = 1..n-1} a(i) for n >= 4. a(n) = a(n - 1 - A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4. (End) EXAMPLE From Petros Hadjicostas, Nov 06 2019: (Start) a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 4. a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 8. a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 19. a(7) =  a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) +  Sum_{i = 1..6} a(i) = 35. a(8) =  a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) +  Sum_{i = 1..7} a(i) = 70. (End) MAPLE s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)); end proc; a := proc(n) option remember;   `if`(n < 4, 1, s(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc; seq(a(n), n = 1 .. 30); MATHEMATICA b[n_] := Module[{p}, For[p = 0, True, p++, If[2^p < n - 1 <= 2^(p + 1), Return[p]]]]; a[n_] := a[n] = If[n < 4, 1, With[{m = 2^(b[n] + 1) + 2 - n}, Total[ Array[a, n - 1]] + a[m]]]; Array[a, 35] (* Jean-François Alcover, Apr 24 2020 *) CROSSREFS Cf. A006257, A049885 (similar with minus a(m)), A049937, A049945. Sequence in context: A162362 A274817 A130887 * A301746 A163318 A129362 Adjacent sequences:  A049930 A049931 A049932 * A049934 A049935 A049936 KEYWORD nonn AUTHOR EXTENSIONS Name edited by and more terms from Petros Hadjicostas, Nov 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 16:20 EST 2020. Contains 338906 sequences. (Running on oeis4.)