OFFSET
1,4
COMMENTS
The fact that a(n) = (1/2)*A049911(n) for n > 3 follows from the facts that a(1) + a(2) + a(3) = (1/2)*Sum_{i=1..3} A049911(i) and that the smallest possible value of 2*n - 2 - 2^ceiling(log_2(n-1)) is 2, but a(2) = (1/2)*A049911(2), and by using mathematical induction. - Petros Hadjicostas, Apr 26 2020
FORMULA
a(n) = (1/2)*A049911(n) for n > 3. - Petros Hadjicostas, Apr 27 2020
PROG
(PARI) lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 1; my(sa = vecsum(va)); for (n=4, nn, va[n] = sa - va[2*n - 2 - 2^ceil(log(n-1)/log(2))]; sa += va[n]; ); va; } \\ Petros Hadjicostas, Apr 26 2020 (with nn > 2)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name edited by Petros Hadjicostas, Apr 26 2020
STATUS
approved