%I
%S 1,2,1,3,3,1,4,2,4,1,5,4,4,5,1,6,3,2,3,6,1,7,5,5,5,5,7,1,8,4,5,2,5,4,
%T 8,1,9,6,3,6,6,3,6,9,1,10,5,6,4,2,4,6,5,10,1,11,7,6,6,7,7,6,6,7,11,1,
%U 12,6,4,3,6,2,6,3,4,6,12,1,13,8,7,7,6,8,8,6,7,7,8,13,1
%N Triangular array T given by rows: T(n,k)=sum of quotients when Euclidean algorithm acts on n and k; for k=1,2,...,n; n=1,2,3,...; also number of subtraction steps when computing gcd(n,k) using subtractions rather than divisions.
%C First quotient=[ n/k ]=Q1; 2nd=[ k/(nk*Q1) ]; ...
%C Number of squares in a greedy tiling of an nbyk rectangle by squares. [_David Radcliffe_, Nov 14 2012]
%H R. J. Mathar, <a href="/A049834/b049834.txt">Table of n, a(n) for n = 1..5050</a>
%H N. J. A. Sloane, <a href="/A049834/a049834.txt">Rows 1 through 100</a>
%e Rows:
%e 1;
%e 2,1;
%e 3,3,1;
%e 4,2,4,1;
%e 5,4,4,5,1;
%e 6,3,2,3,6,1;
%e 7,5,5,5,5,7,1;
%e ...
%p A049834 := proc(n,k)
%p local a,b,r,s ;
%p a := n ;
%p b := k ;
%p r := 1;
%p s := 0 ;
%p while r > 0 do
%p q := floor(a/b);
%p r := ab*q ;
%p s := s+q ;
%p a := b;
%p b := r;
%p end do:
%p s ;
%p end proc: # _R. J. Mathar_, May 06 2016
%o (PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, a = n; b = k; r = 1; s = 0; while (r, q = a\b; r = a  b*q; s += q; a = b; b = r); print1(s, ", ");); print(););} \\ _Michel Marcus_, Aug 17 2015
%Y Cf. A049828.
%Y This is the lower triangular part of the square array in A072030.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_
