%I
%S 0,0,1,1,3,2,4,6,5,6,8,8,11,10,9,12,12,15,15,14,19,16,19,18,19,22,21,
%T 23,26,25,27,24,27,32,27,30,33,31,33,30,35,38,35,38,40,38,44,39,44,46,
%U 43,44,47,45,53,46,49,52,50,56,54,54,57,56
%N a(n) = MAX{T(n,k): k=1,2,...,n}, array T as in A049828.
%C a(n)/n > 1, while n goes to infinity (for proof see attached link).  _Tiberiu SzocsMihai_, Aug 17 2015
%H Tiberiu SzocsMihai, <a href="http://mathticks.blogspot.ro/2011/01/discreteconnectionspartiv.html">Euclidean summation functions</a>, Math Ticks Blog, January 2011.
%o (PARI) a(nn) = {for (n=1, nn, m = 0; for (k=1, n, a = n; b = k; r = 1; s = 0; while (r, q = a\b; r = a  b*q; s += r; a = b; b = r); m = max(m, s);); print1(m, ", "););} \\ _Michel Marcus_, Aug 18 2015
%Y Cf. A049828.
%K nonn
%O 1,5
%A _Clark Kimberling_
