This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049816 Triangular array T read by rows: T(n,k)=number of nonzero remainders when Euclidean algorithm acts on n and k, for k=1,2,...,n, n=1,2,... 13
 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 2, 0, 3, 1, 1, 0, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 LINKS EXAMPLE Triangle begins: 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 2, 0, 3, 1, 1, 0, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0, ... MATHEMATICA R[n_, k_] := R[n, k] = With[{r = Mod[n, k]}, If[r == 0, 1, R[k, r] + 1]]; T[n_, k_] := R[n, k] - 1; Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 12 2019, after Robert Israel in A107435 *) CROSSREFS Sequence in context: A114448 A068933 A015472 * A143542 A072612 A116378 Adjacent sequences:  A049813 A049814 A049815 * A049817 A049818 A049819 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)