login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049797 a(n) = Sum_{k = 2..n} T(n,k), array T as in A049800. 3

%I

%S 0,0,0,2,0,4,4,4,6,14,4,14,20,16,16,30,22,38,32,30,44,64,38,50,68,68,

%T 66,92,66,94,94,96,122,130,90,124,154,158,136,174,148,188,194,172,210,

%U 254,196,228,240,248,258,308,282,302,284

%N a(n) = Sum_{k = 2..n} T(n,k), array T as in A049800.

%H G. C. Greubel, <a href="/A049797/b049797.txt">Table of n, a(n) for n = 1..1000</a>

%p seq(add((n+1) mod floor((k+1)/2), k = 3..n), n = 1..60);

%t Table[Sum[Mod[n+1, Floor[(k+1)/2]], {k,3,n}], {n,60}] (* _G. C. Greubel_, Dec 09 2019 *)

%o (PARI) vector(60, n, sum(k=3,n, (n+1)%((k+1)\2)) ) \\ _G. C. Greubel_, Dec 09 2019

%o (MAGMA) [0,0] cat [ (&+[(n+1) mod Floor((k+1)/2): k in [3..n]]): n in [3..60]]; // _G. C. Greubel_, Dec 09 2019

%o (Sage) [sum( (n+1)%floor((k+1)/2) for k in (3..n)) for n in (1..60)] # _G. C. Greubel_, Dec 09 2019

%o (GAP) List([1..60], n-> Sum([3..n], k-> (n+1) mod Int((k+1)/2)) ); # _G. C. Greubel_, Dec 09 2019

%Y Cf. A049800.

%K nonn

%O 1,4

%A _Clark Kimberling_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 21:00 EDT 2020. Contains 335473 sequences. (Running on oeis4.)