%I #9 Sep 08 2022 08:44:58
%S 0,0,0,0,2,2,3,4,3,4,8,4,8,8,10,5,13,9,16,10,12,13,20,11,16,16,20,17,
%T 27,13,26,20,25,24,32,12,30,26,34,24,40,19,38,30,33,34,47,26,41,33,43,
%U 33,55,38,53,33,40,41,66,30,58,48,55,42,58
%N a(n) = T(n,n-2), array T as in A049783.
%H G. C. Greubel, <a href="/A049787/b049787.txt">Table of n, a(n) for n = 3..1000</a>
%F a(n) = Sum_{j=1..n-4} mod(n-2, floor((n-4)/j)). - _G. C. Greubel_, Dec 12 2019
%p seq( add(`mod`(n-2, floor((n-4)/j)), j=1..n-4), n=3..70); # _G. C. Greubel_, Dec 12 2019
%t Table[Sum[Mod[n-2, Floor[(n-4)/j]], {j, n-4}], {n,3,70}] (* _G. C. Greubel_, Dec 12 2019 *)
%o (PARI) vector(70, n, sum(j=1,n-2, lift(Mod(n, (n-2)\j))) ) \\ _G. C. Greubel_, Dec 12 2019
%o (Magma) [ n lt 5 select 0 else &+[((n-2) mod Floor((n-4)/j)): j in [1..n-4]]: n in [3..70]]; // _G. C. Greubel_, Dec 12 2019
%o (Sage) [sum( (n-2)%floor((n-4)/j) for j in (1..n-4)) for n in (3..70)] # _G. C. Greubel_, Dec 12 2019
%o (GAP) List([3..70], n-> Sum([1..n-4], j-> (n-2) mod Int((n-4)/j)) ); # _G. C. Greubel_, Dec 12 2019
%Y Cf. A049783, A049784, A049785, A049786, A049788, A049789.
%K nonn
%O 3,5
%A _Clark Kimberling_