login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049778 a(n) = Sum_{k=1..floor((n+1)/2)} T(n,2k-1), array T as in A049777. 5
1, 3, 9, 17, 32, 50, 78, 110, 155, 205, 271, 343, 434, 532, 652, 780, 933, 1095, 1285, 1485, 1716, 1958, 2234, 2522, 2847, 3185, 3563, 3955, 4390, 4840, 5336, 5848, 6409, 6987, 7617, 8265, 8968, 9690, 10470, 11270, 12131 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Principal diagonal of the convolution array A213849. - Clark Kimberling, Jul 04 2012

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).

FORMULA

G.f.: x*(1 + x + 2*x^2)/((1-x)^4*(1+x)^2). Pairwise sums of A023855. - Ralf Stephan, May 06 2004

a(n) = Sum_{k=1..n} k*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006

Row sums of triangle A095800^2. - Gary W. Adamson, Dec 12 2007

a(n) = (3 + 10*n + 18*n^2 + 8*n^3 - 3*(-1)^n*(1 + 2*n))/48. - R. J. Mathar, Mar 03 2011

From G. C. Greubel, Dec 12 2019: (Start)

a(n) = m*(3*(n-1)*(n+2) - (m+1)*(4*m-7))/6, where m = floor((n+1)/2).

E.g.f.: ( (3+36*x+42*x^2+8*x^3)*exp(x) - 3*(1-2*x)*exp(-x) )/48. (End)

MAPLE

seq( (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48, n=1..50); # G. C. Greubel, Dec 12 2019

MATHEMATICA

Table[Floor[(n+1)/2]*(3*(n-1)*(n+2) -(1+Floor[(n+1)/2])*(4*Floor[(n+1)/2]-7))/6, {n, 50}] (* G. C. Greubel, Dec 12 2019 *)

PROG

(PARI) vector(50, n, (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48) \\ G. C. Greubel, Dec 12 2019

(MAGMA) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48: n in [1..50]]; // G. C. Greubel, Dec 12 2019

(Sage) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48 for n in (1..50)] # G. C. Greubel, Dec 12 2019

(GAP) List([1..50], n-> (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48); # G. C. Greubel, Dec 12 2019

CROSSREFS

Cf. A023855, A049777, A095800, A213849.

Sequence in context: A090262 A190815 A006459 * A270105 A294425 A123325

Adjacent sequences:  A049775 A049776 A049777 * A049779 A049780 A049781

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 04:08 EST 2020. Contains 338607 sequences. (Running on oeis4.)