

A049650


Compositorial numbers (A036691) + 1.


3



2, 5, 25, 193, 1729, 17281, 207361, 2903041, 43545601, 696729601, 12541132801, 250822656001, 5267275776001, 115880067072001, 2781121609728001, 69528040243200001, 1807729046323200001, 48808684250726400001, 1366643159020339200001
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is to Euclid numbers (A006862): 1 + product of first n consecutive primes, as nonprimes (A018252) are to primes (A000040). These numbers  1, times the appropriate Euclid numbers  1, are the factorials. Primes in this sequence include a(1) = 2, a(2) = 5, a(4) = 193, a(8) = 2903041, a(12) = 250822656001, a(17) = 1807729046323200001.  Jonathan Vos Post, Jun 07 2008


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..429
Hisanori Mishima, Factorizations of many number sequences
Hisanori Mishima, Factorizations of many number sequences


FORMULA

a(n) = 1 + Product_{i=1..n} A018252(i) = 1 + Product_{j=1..n} (j=1 or j>1 and j is not in A000040}.  Jonathan Vos Post, Jun 07 2008


MATHEMATICA

Composite[n_] := FixedPoint[n + PrimePi[#] + 1 &, n + PrimePi[n] + 1]; Table[Product[Composite[i], {i, 1, n}] + 1, {n, 0, 30}] (* G. C. Greubel, Dec 05 2017 *)


CROSSREFS

Cf. A036691, A060880, A006862, A036691.
Sequence in context: A074417 A296105 A268120 * A191506 A139007 A015486
Adjacent sequences: A049647 A049648 A049649 * A049651 A049652 A049653


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, May 05 2001


STATUS

approved



