This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049615 Array T by antidiagonals; T(i,j) = number of lattice points (x,y) hidden from (i,j), where 0<=x<=i, 0<=y<=j; (x,y) is hidden if there is a lattice point (h,k) collinear with and between (x,y) and (i,j). 14
 0, 0, 0, 1, 0, 1, 2, 1, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 4, 3, 4, 5, 4, 6, 6, 6, 4, 5, 6, 5, 7, 8, 8, 7, 5, 6, 7, 6, 9, 9, 11, 9, 9, 6, 7, 8, 7, 10, 12, 12, 12, 12, 10, 7, 8, 9, 8, 12, 13, 16, 14, 16, 13, 12, 8, 9, 10, 9, 13, 15, 17, 18, 18, 17, 15, 13, 9, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS From Robert Israel, Jun 25 2015: (Start) T(i,j) = number of (x,y) with 1 <= x <= i, 1 <= y <= j and gcd(x,y) > 1. T(n,n) - T(n-1,n) = A062830(n) for x >= 2. T(m+1,n+1) - T(m+1,n) - T(m,n+1) + T(m,n) = 1 if gcd(m+1,n+1) > 1, 0 otherwise. (End) LINKS Ivan Neretin, Table of n, a(n) for n = 0..5049 EXAMPLE Antidiagonals (each starting on row 0): {0}; {0,0}; {1,0,1}; ... MAPLE N := 20: # to get the first N*(N+1)/2 terms T:= Array(1..N+1, 1..N+1): B:= Array(1..N+1, 1..N+1, (i, j) -> `if`(igcd(i-1, j-1)>1, 1, 0)): T[1, 1..N+1]:= Statistics:-CumulativeSum(B[1, 1..N+1]): for i from 2 to N+1 do    T[i, 1..N+1]:= T[i-1, 1..N+1] + Statistics:-CumulativeSum(B[i, 1..N+1]) od: seq(seq(round(T[i+1, t-i+1]), i=0..t), t=0..N); # Robert Israel, Jun 25 2015 # alternative program R. J. Mathar, Oct 26 2015 A049615 := proc(n, k)     local a, x, y;     a := 0 ;     for x from 0 to n do     for y from 0 to k do         if igcd(x, y) > 1 then             a := a+1 ;         end if;     end do:     end do:     a; end proc: MATHEMATICA Table[Length[Select[Flatten[Table[{x, y}, {x, 0, n - k}, {y, 0, k}], 1], GCD @@ # > 1 &]], {n, 0, 11}, {k, 0, n}] // Flatten (* Ivan Neretin, Jun 25 2015 *) CROSSREFS Cf. A032766, A062830. Sequence in context: A029260 A205725 A091093 * A114919 A087917 A087741 Adjacent sequences:  A049612 A049613 A049614 * A049616 A049617 A049618 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)