login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049598 12 times triangular numbers. 26
0, 12, 36, 72, 120, 180, 252, 336, 432, 540, 660, 792, 936, 1092, 1260, 1440, 1632, 1836, 2052, 2280, 2520, 2772, 3036, 3312, 3600, 3900, 4212, 4536, 4872, 5220, 5580, 5952, 6336, 6732, 7140, 7560, 7992, 8436, 8892, 9360, 9840, 10332, 10836, 11352 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n-1) is the Wiener index of the helm graph H(n) (n>=3). The graph H(n) is obtained from an n-wheel graph (on n+1 nodes) by adjoining a pendant edge at each node of the cycle. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. The Wiener polynomial of H(n) is (1/2)*n*t*((n-3)t^3 + 2(n-2)t^2 + (n+3)t + 6). - Emeric Deutsch, Sep 28 2010

Also sequence found by reading the line from 0, in the direction 0, 12, ..., and the same line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. Axis perpendicular to A195158 in the same spiral. - Omar E. Pol, Sep 29 2011

Also the Wiener index of the (n+1)-gear graph. - Eric W. Weisstein, Sep 08 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.

Eric Weisstein's World of Mathematics, Gear Graph

Eric Weisstein's World of Mathematics, Helm Graph

Eric Weisstein's World of Mathematics, Wiener Index

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 6*n*(n+1).

G.f.: 12*x/(1-x)^3.

a(n) = 12*A000217(n). - Omar E. Pol, Dec 11 2008

a(n) = 12*n + a(n-1) (with a(0)=0). - Vincenzo Librandi, Aug 06 2010

a(n) = A003154(n+1) - 1. - Omar E. Pol, Oct 03 2011

a(n) = A032528(2*n+1) - 1. - Adriano Caroli, Jul 19 2013

a(n) = A001844(n) + A073577(n). - Bruce J. Nicholson, Aug 06 2017

E.g.f.: 6*x*(x+2)*exp(x). - G. C. Greubel, Aug 23 2017

EXAMPLE

a(1) = 12*1 + 0 = 12;

a(2) = 12*2 + 12 = 36;

a(3) = 12*3 + 36 = 72.

MATHEMATICA

12 * Accumulate[Range[0, 50]] (* Harvey P. Dale, Feb 05 2013 *)

(* Start from Eric W. Weisstein, Sep 08 2017 *)

Table[6 n (n + 1), {n, 0, 20}]

12 PolygonalNumber[3, Range[0, 20]]

12 Binomial[Range[20], 2]

LinearRecurrence[{3, -3, 1}, {12, 36, 72}, {0, 20}]

(* End *)

PROG

(PARI) a(n)=6*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017

CROSSREFS

Cf. A000217, A001844, A003154, A027468, A035008, A073577.

Sequence in context: A211609 A043140 A043920 * A152135 A080562 A212963

Adjacent sequences:  A049595 A049596 A049597 * A049599 A049600 A049601

KEYWORD

nonn,easy

AUTHOR

Joe Keane (jgk(AT)jgk.org)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 07:19 EDT 2019. Contains 327995 sequences. (Running on oeis4.)