login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049576 Primes p such that x^44 = 2 has a solution mod p. 2
2, 7, 31, 47, 71, 73, 79, 103, 113, 127, 151, 167, 191, 223, 233, 239, 257, 263, 271, 281, 311, 337, 359, 367, 383, 431, 439, 479, 487, 503, 577, 593, 599, 601, 607, 631, 647, 719, 743, 751, 823, 839, 863, 887, 911, 919, 937, 967, 983, 1031, 1033, 1039 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Complement of A059636 relative to A000040. - Vincenzo Librandi, Sep 14 2012

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000

Index entries for related sequences

MATHEMATICA

ok[p_]:= Reduce[Mod[x^44 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)

PROG

(MAGMA) [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^44 eq 2}]; // Vincenzo Librandi, Sep 14 2012

(PARI)

N=10^4;  default(primelimit, N);

ok(p, r, k)={ return (  Mod(r, p)^((p-1)/gcd(k, p-1)) == 1 ); }

forprime(p=2, N, if (ok(p, 2, 44), print1(p, ", ")));

/* Joerg Arndt, Sep 21 2012 */

CROSSREFS

Cf. A000040, A059636.

Sequence in context: A193353 A102158 A191073 * A158713 A213721 A102162

Adjacent sequences:  A049573 A049574 A049575 * A049577 A049578 A049579

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 15:32 EST 2016. Contains 279003 sequences.