login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049576 Primes p such that x^44 = 2 has a solution mod p. 2
2, 7, 31, 47, 71, 73, 79, 103, 113, 127, 151, 167, 191, 223, 233, 239, 257, 263, 271, 281, 311, 337, 359, 367, 383, 431, 439, 479, 487, 503, 577, 593, 599, 601, 607, 631, 647, 719, 743, 751, 823, 839, 863, 887, 911, 919, 937, 967, 983, 1031, 1033, 1039 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Complement of A059636 relative to A000040. - Vincenzo Librandi, Sep 14 2012

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000

Index entries for related sequences

MATHEMATICA

ok[p_]:= Reduce[Mod[x^44 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)

PROG

(MAGMA) [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^44 eq 2}]; // Vincenzo Librandi, Sep 14 2012

(PARI)

N=10^4;  default(primelimit, N);

ok(p, r, k)={ return (  Mod(r, p)^((p-1)/gcd(k, p-1)) == 1 ); }

forprime(p=2, N, if (ok(p, 2, 44), print1(p, ", ")));

/* Joerg Arndt, Sep 21 2012 */

CROSSREFS

Cf. A000040, A059636.

Sequence in context: A193353 A102158 A191073 * A158713 A213721 A102162

Adjacent sequences:  A049573 A049574 A049575 * A049577 A049578 A049579

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 10:46 EST 2014. Contains 252202 sequences.