login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p such that x^36 = 2 has a solution mod p.
5

%I #15 Sep 08 2022 08:44:58

%S 2,23,31,47,71,89,113,127,167,191,223,233,239,257,263,281,311,353,359,

%T 383,431,439,479,503,593,599,601,617,647,719,727,743,839,863,881,887,

%U 911,983,1031,1049,1097,1103,1151,1193,1217,1223,1289,1319,1327,1367

%N Primes p such that x^36 = 2 has a solution mod p.

%H R. J. Mathar, <a href="/A049568/b049568.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Pri#smp">Index entries for related sequences</a>

%t ok[p_]:= Reduce[Mod[x^36 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* _Vincenzo Librandi_, Sep 14 2012 *)

%o (Magma) [p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^36 eq 2}]; // _Vincenzo Librandi_, Sep 14 2012

%Y Cf. A000040.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_