login
A049547
Primes p such that x^15 = 2 has a solution mod p.
2
2, 3, 5, 17, 23, 29, 43, 47, 53, 59, 83, 89, 107, 109, 113, 127, 137, 149, 157, 167, 173, 179, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 283, 293, 307, 317, 347, 353, 359, 383, 389, 397, 419, 431, 433, 439, 443, 449, 457, 467, 479, 499, 503, 509
OFFSET
1,1
COMMENTS
Complement of A059308 relative to A000040. - Vincenzo Librandi, Sep 13 2012
MATHEMATICA
ok[p_]:= Reduce[Mod[x^15- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(600) | exists(t){x : x in ResidueClassRing(p) | x^15 eq 2}]; // Vincenzo Librandi, Sep 13 2012
CROSSREFS
Sequence in context: A119405 A032733 A111632 * A049577 A353153 A121558
KEYWORD
nonn,easy
STATUS
approved