

A049533


Numbers n such that n^2+1 is squarefree.


4



1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A059592(n) = 1; cf. A069987.  Reinhard Zumkeller, Nov 08 2006
Complement of A049532.
Estermann proved that a(n) ~ kn with k = 2.235...; more precisely, there are cx + O(x^(2/3) log x) terms up to x, where c = 1/k = 1/2 * prod 1  2/p^2 where the product is over primes p which are 1 mod 4. HeathBrown improves the error term to O(x^(7/12) log x).  Charles R Greathouse IV, Oct 16 2017
There are 89489 terms up to 10^5, 894856 terms up to 10^6, 8948417 up to 10^8, and 89484102 up to 10^9.  Charles R Greathouse IV, Nov 26 2017


LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000
T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), pp. 653662.
D. R. HeathBrown, Squarefree values of n^2 + 1, Acta Arithmetica 155:1 (2012), pp. 113. arXiv:1010.6217 [math.NT]


EXAMPLE

10 is a member because 10^2+1=100+1=101 is squarefree.
Reasons why certain numbers are excluded: 7^2+1 = 2*5^2, 18^2+1 = 13*5^2, 32^2+1 = 41*5^2, 38^2+1 = 5*17^2, 41^2+1 = 2*29^2, 43^2+1 = 74*5^2, 57^2+1 = 130*5^2, 82^2+1 = 269*5^2.  Neven Juric, Oct 06 2008


MATHEMATICA

Select[Range@ 80, SquareFreeQ[#^2 + 1] &] (* Michael De Vlieger, Aug 09 2017 *)


PROG

(MAGMA) [ n: n in [1..100]  IsSquarefree(n^2+1) ]; // Vincenzo Librandi, Dec 25 2010
(PARI) isok(n) = issquarefree(n^2+1); \\ Michel Marcus, Feb 09 2016


CROSSREFS

Cf. A049532, A059592, A069987.
Sequence in context: A129618 A038673 A183219 * A052419 A257458 A179439
Adjacent sequences: A049530 A049531 A049532 * A049534 A049535 A049536


KEYWORD

nonn


AUTHOR

Labos Elemer


STATUS

approved



