login
Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.
2

%I #8 Apr 30 2014 01:37:32

%S 1,1,1,1,2,1,1,3,5,1,1,4,9,13,1,1,5,13,25,33,1,1,6,17,37,65,81,1,1,7,

%T 21,49,97,161,193,1,1,8,25,61,129,241,385,449,1,1,9,29,73,161,321,577,

%U 897,1025,1,1,10,33,85,193,401,769,1345,2049,2305,1,1,11,37,97,225,481

%N Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.

%F A005183(n) = T(1, n), A002064(n) = T(2, n), A048474(n) = T(3, n), A000337(n) = T(4, n), A016813(n) = T(n, 2), A017533(n) = T(n, 3).

%e Antidiagonals: 1; 1,1; 1,2,1; 1,3,5,1; 1,4,9,13,1; ...

%o (PARI) {T(k, n) = k * n * 2^(n-1) + 1}

%Y Cf. A000337, A002064, A005183, A016813, A017533, A048474, A049069, A048472.

%Y Essentially the same as A049069.

%K nonn,tabl,easy

%O 0,5

%A _Michael Somos_, Sep 25 1999