|
|
A049471
|
|
Decimal expansion of tan(1).
|
|
10
|
|
|
1, 5, 5, 7, 4, 0, 7, 7, 2, 4, 6, 5, 4, 9, 0, 2, 2, 3, 0, 5, 0, 6, 9, 7, 4, 8, 0, 7, 4, 5, 8, 3, 6, 0, 1, 7, 3, 0, 8, 7, 2, 5, 0, 7, 7, 2, 3, 8, 1, 5, 2, 0, 0, 3, 8, 3, 8, 3, 9, 4, 6, 6, 0, 5, 6, 9, 8, 8, 6, 1, 3, 9, 7, 1, 5, 1, 7, 2, 7, 2, 8, 9, 5, 5, 5, 0, 9, 9, 9, 6, 5, 2, 0, 2, 2, 4, 2, 9, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 1..20000
Mohammad K. Azarian, Forty-Five Nested Equilateral Triangles and cosecant of 1 degree, Problem 813, College Mathematics Journal, Vol. 36, No. 5, November 2005, p. 413-414.
Mohammad K. Azarian, Solution of Forty-Five Nested Equilateral Triangles and cosecant of 1 degree, Problem 813, College Mathematics Journal, Vol. 37, No. 5, November 2006, pp. 394-395.
Index entries for transcendental numbers
|
|
EXAMPLE
|
1.5574077246549022305...
|
|
PROG
|
(PARI) default(realprecision, 20080); x=tan(1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b049471.txt", n, " ", d)); \\
|
|
CROSSREFS
|
Cf. A093178 (continued fraction), A009001.
Sequence in context: A061382 A113272 A222392 * A049789 A234473 A011500
Adjacent sequences: A049468 A049469 A049470 * A049472 A049473 A049474
|
|
KEYWORD
|
cons,easy,nonn
|
|
AUTHOR
|
Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|