login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049418 3-i-sigma(n): sum of 3-infinitary divisors of n: if n=Product p(i)^r(i) and d=Product p(i)^s(i), each s(i) has a digit a<=b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-i-divisor of n. 7
1, 3, 4, 7, 6, 12, 8, 9, 13, 18, 12, 28, 14, 24, 24, 27, 18, 39, 20, 42, 32, 36, 24, 36, 31, 42, 28, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 54, 42, 96, 44, 84, 78, 72, 48, 108, 57, 93, 72, 98, 54, 84, 72, 72, 80, 90, 60, 168, 62, 96, 104, 73, 84, 144, 68, 126, 96 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
J. O. M. Pedersen, Tables of Aliquot Cycles, backup on web.archive.org of no more exiting page, as of May 2014
J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
FORMULA
Multiplicative with a(p^e) = prod_{k >= 0} (p^(3^k*{d_k+1}) - 1)/(p^(3^k) - 1), where e = sum_{k >= 0} d_k 3^k (base 3 representation). - Christian G. Bower and Mitch Harris, May 20 2005. [Edited by M. F. Hasler, Sep 21 2022]
Denote P_3 = {p^3^k}, k = 0, 1, ..., p runs primes. Then every n has a unique representation of the form n = prod q_i prod (r_j)^2, where q_i, r_j are distinct elements of P_3. Using this representation, we have a(n) = prod (q_i+1)*prod ((r_j)^2+r_j+1). - Vladimir Shevelev, May 07 2013
EXAMPLE
Let n = 28 = 2^2*7. Then a(n) = (2^2 + 2 + 1)*(7 + 1) = 56. - Vladimir Shevelev, May 07 2013
MAPLE
A049418 := proc(n) option remember; local ifa, a, p, e, d, k ; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1, op(1, ifa)) ; e := op(2, op(1, ifa)) ; d := convert(e, base, 3) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1, d))*3^k)-1)/(p^(3^k)-1) ; end do: else for d in ifa do a := a*procname( op(1, d)^op(2, d)) ; end do: return a; end if; end proc:
seq(A049418(n), n=1..40) ; # R. J. Mathar, Oct 06 2010
MATHEMATICA
A049418[n_] := Module[{ifa = FactorInteger[n], a = 1, p, e, d, k}, If[ Length[ifa] == 1, p = ifa[[1, 1]]; e = ifa[[1, 2]]; d = Reverse[ IntegerDigits[e, 3] ]; For[k = 1, k <= Length[d], k++, a = a*(p^((1 + d[[k]])*3^(k - 1)) - 1)/(p^(3^(k - 1)) - 1)], Do[ a = a*A049418[ d[[1]]^d[[2]] ], {d, ifa}]]; Return[a] ]; A049418[1] = 1; Table[ A049418[n] , {n, 1, 69}] (* Jean-François Alcover, Jan 03 2012, after R. J. Mathar *)
PROG
(Haskell) following Bower and Harris:
a049418 1 = 1
a049418 n = product $ zipWith f (a027748_row n) (a124010_row n) where
f p e = product $ zipWith div
(map (subtract 1 . (p ^)) $
zipWith (*) a000244_list $ map (+ 1) $ a030341_row e)
(map (subtract 1 . (p ^)) a000244_list)
-- Reinhard Zumkeller, Sep 18 2015
(PARI) apply( {A049418(n)=vecprod([prod(k=1, #n=digits(f[2], 3), (f[1]^(3^(#n-k)*(n[k]+1))-1)\(f[1]^3^(#n-k)-1))|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Sep 21 2022
CROSSREFS
Cf. A049417 (2-infinitary), A074847 (4-infinitary), A097863 (5-infinitary).
Sequence in context: A073183 A353900 A366903 * A333926 A051378 A366440
KEYWORD
nonn,nice,easy,mult
AUTHOR
EXTENSIONS
More terms from Naohiro Nomoto, Sep 10 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 11:31 EDT 2024. Contains 371792 sequences. (Running on oeis4.)