%I #18 Nov 11 2018 04:18:11
%S 1,7,85,1465,32677,894103,28977817,1085272945,46112305897,
%T 2191384887175,115164935076445,6631403822046697,415179375712149517,
%U 28079663069162365207,2040146099677929685345,158473205735310372796897
%N Row sums of triangle A049385.
%C Generalized Bell numbers B(6,1;n).
%H Vincenzo Librandi, <a href="/A049412/b049412.txt">Table of n, a(n) for n = 1..360</a>
%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="https://doi.org/10.1016/S0375-9601(03)00194-4">The general boson normal ordering problem</a>, Phys. Lett. A 309 (2003) 198-205.
%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="https://arxiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.
%H W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%F E.g.f.: exp(-1+1/(1-5*x)^(1/5))-1.
%t terms = 16;
%t Rest[CoefficientList[Exp[-1+1/(1-5x)^(1/5)]-1+O[x]^(terms+1), x]] Range[ terms]! (* _Jean-François Alcover_, Nov 11 2018 *)
%Y Cf. A049120, generalized Bell numbers B(5, 1, n).
%K nonn
%O 1,2
%A _Wolfdieter Lang_