%I #11 Mar 31 2012 13:19:59
%S 1,5,41,465,6721,117941,2433145,57673281,1543866945,46052954821,
%T 1514472783561,54426342354385,2121878761891201,89187219264121525,
%U 4020175011403931801,193438800635132796161,9895634072548245693825
%N Row sums of triangle A035469.
%C Generalized Bell numbers B(4,1;n).
%D P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem.</a>
%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://arXiv.org/abs/quant-ph/0311033">Combinatorial coherent states via normal ordering of bosons</a>.
%F E.g.f.: exp(-1+1/(1-3*x)^(1/3))-1.
%F a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^4*d/dx. Cf. A000110, A000262, A049118 and A049120. - Peter Bala, Nov 25 2011
%Y Cf. A049118, generalized Bell numbers B(3, 1, n). A049120.
%K easy,nonn
%O 1,2
%A _Wolfdieter Lang_