This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049114 2-ranks of difference sets constructed from Glynn type II hyperovals. 2
 1, 1, 5, 7, 21, 37, 89, 173, 383, 777, 1665, 3441, 7277, 15159, 31885, 66645, 139865, 292757, 613823, 1285585, 2694433, 5644609, 11828501, 24782311, 51928773, 108802597, 227978105, 477674813, 1000877759, 2097121497, 4394101857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS R. Evans, H. Hollmann, C. Krattenthaler and Q. Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119. Ronald Evans, Henk Hollmann, Christian Krattenthaler, and Qing Xiang, Supplement to "Gauss Sums, Jacobi Sums and p-ranks ..." Q. Xiang, On Balanced Binary Sequences with Two-Level Autocorrelation Functions, IEEE Trans. Inform. Theory 44 (1998), 3153-3156. FORMULA G.f.: (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5). a(n+1) = a(n) + 3*a(n-1) - a(n-2) - a(n-3) + 1. MAPLE L := 1, 1, 5, 7: for i from 5 to 100 do l := nops([ L ]): L := L, op(l, [ L ])+3*op(l-1, [ L ])-op(l-2, [ L ])-op(l-3, [ L ])+1: od: [ L ]; MATHEMATICA Join[ {1, 1, 5, 7}, Table[ a[ 1 ]=1; a[ 2 ]=1; a[ 3 ]=5; a[ 4 ]=7; a[ i ]=a[ i-1 ]+3*a[ i-2 ]-a[ i-3 ]-a[ i-4 ]+1, {i, 5, 100} ] ] CROSSREFS Cf. A001595, A049112. Sequence in context: A002596 A098597 A097038 * A179189 A030735 A303189 Adjacent sequences:  A049111 A049112 A049113 * A049115 A049116 A049117 KEYWORD nonn,easy AUTHOR Christian Krattenthaler (kratt(AT)ap.univie.ac.at) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 17:12 EST 2019. Contains 319399 sequences. (Running on oeis4.)