%I
%S 3,7,11,17,19,23,31,43,47,53,59,67,71,79,83,89,97,103,107,127,131,139,
%T 149,151,163,167,179,191,197,199,211,223,227,233,239,241,251,263,269,
%U 271,283,293,307,311,331,337,347,349,359,367,379,383,419,431,439,443
%N Primes p such that p+1 is divisible by a square.
%C Numbers m such that A010051(m)*(1A008966(m+1)) = 1.  _Reinhard Zumkeller_, May 21 2009
%C A160696(a(n)) > 1.  _Reinhard Zumkeller_, May 24 2009
%H T. D. Noe, <a href="/A049098/b049098.txt">Table of n, a(n) for n = 1..1000</a>
%e 31 is here because 32 is divisible by a square, 16.
%e 101 is not here because 102=2*3*17 is squarefree.
%p with(numtheory): a := proc (n) if isprime(n) = true and issqrfree(n+1) = false then n else end if end proc: seq(a(n), n = 1 .. 500); # _Emeric Deutsch_, Jun 21 2009
%t Select[Prime[Range[200]],!SquareFreeQ[#+1]&] (* _Harvey P. Dale_, Mar 27 2011 *)
%t Select[Prime[Range[200]], MoebiusMu[# + 1] == 0 &] (* _Alonso del Arte_, Oct 18 2011 *)
%o (Haskell)
%o a049098 n = a049098_list !! (n1)
%o a049098_list = filter ((== 0) . a008966 . (+ 1)) a000040_list
%o  _Reinhard Zumkeller_, Oct 18 2011
%o (PARI) forprime(p=2,1e4,if(!issquarefree(p+1),print1(p", "))) \\ _Charles R Greathouse IV_, Oct 18 2011
%K nonn,easy,nice
%O 1,1
%A _Labos Elemer_
