%I
%S 2,10,68,438,442,2616,100350,100354,100360,637198,637306,27066970,
%T 27067050,27067102,27067114,27067116,179992840,179993002,55762149072,
%U 382465573492,2636913002950
%N Mean gap between successive primes up to nth prime is an integer.
%H C. K. Caldwell, <a href="http://primes.utm.edu/glossary/page.php?sort=PrimeGaps">Prime Gaps</a>
%F n such that (n  1) divides (prime(n)  n  1), or equivalently,
%F n such that (n  1) divides (prime(n)  2).
%e a(2)=10 since 9 (number of gaps) divides 18 (number of composites less than 29, the 10th prime). Therefore the "average" gap less than 29 is exactly 2.
%Y Cf. A049038, A049066, A228543.
%K nonn,more
%O 1,1
%A _G. L. Honaker, Jr._
%E More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 25 2000
%E Three more terms from _Phil Carmody_, Jul 23 2003
