login
Continued fraction for i^i = exp(-Pi/2).
3

%I #19 Aug 03 2024 13:24:41

%S 0,4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,2,1,1,7,2,2,1,1,1,2,7,1,

%T 23,28,2,1,2,3,138,1,4,2,3,1,1,50,1,2,1,1,6,1,24,1,2,2,1,1,1,1,1,4,6,

%U 11,1,16,3,3,1,1,1,2,8,3,47,2,1,2,2,1,38,1,5,1,147

%N Continued fraction for i^i = exp(-Pi/2).

%H Harry J. Smith, <a href="/A049007/b049007.txt">Table of n, a(n) for n = 0..19999</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H H. S. Uhler, <a href="https://www.jstor.org/stable/2972387">On the numerical value of i^i</a>, Amer. Math. Monthly, 28 (1921), 114-116.

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%e 0.20787957635076190854695561983497877003387...

%e i^i = 0.207879576350761908546... = 0 + 1/(4 + 1/(1 + 1/(4 + 1/(3 + ...)))). - _Harry J. Smith_, Apr 28 2009

%t ContinuedFraction[ E^(-Pi/2), 100]

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(-Pi/2)); for (n=1, 20000, write("b049007.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 28 2009

%Y Cf. A049006 (decimal expansion).

%K nonn,cofr

%O 0,2

%A _N. J. A. Sloane_

%E Offset changed by _Andrew Howroyd_, Aug 03 2024