login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048990 Catalan numbers with even index (A000108(2*n), n >= 0): a(n) = C(4*n,2*n)/(2*n+1). 12

%I

%S 1,2,14,132,1430,16796,208012,2674440,35357670,477638700,6564120420,

%T 91482563640,1289904147324,18367353072152,263747951750360,

%U 3814986502092304,55534064877048198,812944042149730764,11959798385860453492,176733862787006701400

%N Catalan numbers with even index (A000108(2*n), n >= 0): a(n) = C(4*n,2*n)/(2*n+1).

%C With interpolated zeros, this is C(n)(1+(-1)^n)/2 with g.f. given by 2/(sqrt(1+4x)+sqrt(1-4x)). - _Paul Barry_, Sep 09 2004

%C Self-convolution of a(n)/4^n gives Catalan numbers (A000108). - _Vladimir Reshetnikov_, Oct 10 2016

%D Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015.

%H Vincenzo Librandi, <a href="/A048990/b048990.txt">Table of n, a(n) for n = 0..200</a>

%H G. Markowsky, <a href="http://arxiv.org/abs/1205.2458">A method for deriving hypergeometric and related identities from the H^2 Hardy norm of conformal maps</a>, arXiv preprint arXiv:1205.2458 [math.CV], 2012.

%F a(n) = 2 * A065097(n).

%F G.f.: A(x) = sqrt(1/8*x^-1*(1-sqrt(1-16*x))).

%F G.f.: 2F1( (1/4, 3/4); (3/2))(16*x). - _Olivier GĂ©rard_ Feb 17 2011

%F n*(2*n+1)*a(n) -2*(4*n-1)*(4*n-3)*a(n-1)=0. - _R. J. Mathar_, Nov 30 2012

%F E.g.f: 2F2(1/4, 3/4; 1, 3/2; 16*x). - _Vladimir Reshetnikov_, Apr 24 2013

%F G.f. A(x) satisfies: A(x) = exp( x*A(x)^4 + Integral(A(x)^4 dx) ). - _Paul D. Hanna_, Nov 09 2013

%F G.f. A(x) satisfies: A(x) = sqrt(1 + 4*x*A(x)^4). - _Paul D. Hanna_, Nov 09 2013

%F a(n) = hypergeom([1-2*n,-2*n],[2],1). - _Peter Luschny_, Sep 22 2014

%F a(n) ~ 2^(4*n-3/2)/(sqrt(Pi)*n^(3/2)). - _Ilya Gutkovskiy_, Oct 10 2016

%e sqrt(2*x^-1*(1-sqrt(1-x))) = 1 + 1/8*x + 7/128*x^2 + 33/1024*x^3 + ...

%t f[n_] := CatalanNumber[ 2n]; Array[f, 18, 0] (* Or *)

%t CoefficientList[ Series[ Sqrt[2]/Sqrt[1 + Sqrt[1 - 16 x]], {x, 0, 17}], x] (* _Robert G. Wilson v_ *)

%t CatalanNumber[Range[0,40,2]] (* _Harvey P. Dale_, Mar 19 2015 *)

%o (Mupad) combinat::dyckWords::count(2*n) $ n = 0..28 // _Zerinvary Lajos_, Apr 14 2007

%o (PARI) /* G.f.: A(x) = exp( x*A(x)^4 + Integral(A(x)^4 dx) ): */

%o {a(n)=local(A=1+x); for(i=1, n, A=exp(x*A^4 + intformal(A^4 +x*O(x^n)))); polcoeff(A, n)} \\ _Paul D. Hanna_, Nov 09 2013

%o for(n=0, 30, print1(a(n), ", "))

%o (Sage)

%o A048990 = lambda n: hypergeometric([1-2*n,-2*n],[2],1)

%o [Integer(A048990(n).n()) for n in range(20)] # _Peter Luschny_, Sep 22 2014

%Y Cf. A000108, A024492, A065097.

%K easy,nonn

%O 0,2

%A _Wolfdieter Lang_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 02:07 EST 2016. Contains 278902 sequences.