This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048986 Home primes in base 2: primes reached when you start with n and (working in base 2) concatenate its prime factors (A048985); repeat until a prime is reached (or -1 if no prime is ever reached). Answer is written in base 10. 6
 1, 2, 3, 31, 5, 11, 7, 179, 29, 31, 11, 43, 13, 23, 29, 12007, 17, 47, 19, 251, 31, 43, 23, 499, 4091, 4091, 127, 4091, 29, 127, 31, 1564237, 59, 4079, 47, 367, 37, 83, 61, 383, 41, 179, 43, 499, 4091, 4091, 47, 683, 127, 173, 113, 173, 53, 191, 4091 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(1) = 1 by convention. The first binary home prime that is not known is a(2295) - Ely Golden, Jan 09 2017 LINKS Ely Golden, Table of n, a(n) for n = 1..2294 P. De Geest, Home Primes Ely Golden, Mersenne Wiki Home Primes base 2 Ely Golden, Table of n, a(n) for n = 1..3000 (a-file) EXAMPLE 4 = 2*2 -> 1010 = 10 = 2*5 ->10101 = 21 = 3*7 -> 11111 = 31 = prime. MATHEMATICA f[n_] := Module[{fi}, If[PrimeQ[n], n, fi = FactorInteger[n]; Table[ First[#], {Last[#]}]& /@ fi // Flatten // IntegerDigits[#, 2]& // Flatten // FromDigits[#, 2]&]]; a[1] = 1; a[n_] := TimeConstrained[FixedPoint[f, n], 1] /. \$Aborted -> -1; Array[a, 55] (* Jean-François Alcover, Jan 01 2016 *) PROG (SageMath) def digitLen(x, n):     r=0     while(x>0):         x//=n         r+=1     return r def concatPf(x, n):     r=0     f=list(factor(x))     for c in xrange(len(f)):         for d in xrange(f[c][1]):             r*=(n**digitLen(f[c][0], n))             r+=f[c][0]     return r def hp(x, n):     x1=concatPf(x, n)     while(x1!=x):         x=x1         x1=concatPf(x1, n)     return x radix=2 index=2 while(index<=1344):     print(str(index)+" "+str(hp(index, radix)))     index+=1 CROSSREFS Cf. A048985, A037274, A049065. Sequence in context: A217370 A088115 A230627 * A093712 A035514 A114009 Adjacent sequences:  A048983 A048984 A048985 * A048987 A048988 A048989 KEYWORD nonn,base,nice AUTHOR Michael B Greenwald (mbgreen(AT)central.cis.upenn.edu) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 22:16 EDT 2019. Contains 324358 sequences. (Running on oeis4.)