login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048967 Number of even entries in row n of Pascal's triangle (A007318). 14
0, 0, 1, 0, 3, 2, 3, 0, 7, 6, 7, 4, 9, 6, 7, 0, 15, 14, 15, 12, 17, 14, 15, 8, 21, 18, 19, 12, 21, 14, 15, 0, 31, 30, 31, 28, 33, 30, 31, 24, 37, 34, 35, 28, 37, 30, 31, 16, 45, 42, 43, 36, 45, 38, 39, 24, 49, 42, 43, 28, 45, 30, 31, 0, 63, 62, 63, 60, 65, 62, 63, 56, 69, 66, 67 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

In rows 2^k - 1 all entries are odd.

a(n) = 0 (all the entries in the row are odd) iff n = 2^m - 1 for some m >= 0 and then n belongs to sequence A000225. - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

Also number of zeros in n-th row of Sierpiński's triangle (cf. A047999): a(n) = A023416(A001317(n)). - Reinhard Zumkeller, Nov 24 2012

a(n) = row sums in A219463 = A000120(A219843(n)). - Reinhard Zumkeller, Nov 30 2012

A249304(n+1) = a(n+1) + a(n). - Reinhard Zumkeller, Nov 14 2014

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)

FORMULA

a(n) = n+1 - A001316(n) = n+1 - 2^A000120(n) = n+1 - Sum_{k=0..n} (C(n, k) mod 2) = Sum_{ k=0..n} ((1 - C(n, k)) mod 2)

a(2n) = a(n) + n, a(2n+1) = 2a(n). - Ralf Stephan, Oct 07 2003

EXAMPLE

Row 4 is 1 4 6 4 1 with 3 even entries so a(4)=3.

MATHEMATICA

Table[n + 1 - Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ], {n, 0, 100} ]

PROG

(PARI) a(n)=if(n<1, 0, if(n%2==0, a(n/2)+n/2, 2*a((n-1)/2)))

(Haskell)

import Data.List (transpose)

a048967 n = a048967_list !! n

a048967_list = 0 : xs where

   xs = 0 : concat (transpose [zipWith (+) [1..] xs, map (* 2) xs])

-- Reinhard Zumkeller, Nov 14 2014, Nov 24 2012

CROSSREFS

Cf. A007318, A001316, A000120, A000225, A038573.

Cf. A249304.

Sequence in context: A089306 A244996 A086099 * A166592 A103497 A191390

Adjacent sequences:  A048964 A048965 A048966 * A048968 A048969 A048970

KEYWORD

easy,nonn

AUTHOR

Brian Galebach

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 17:20 EDT 2018. Contains 316529 sequences. (Running on oeis4.)