

A048963


Table in which nth row lists digits in periodic part of decimal expansion of reciprocal of nth prime.


4



0, 3, 0, 1, 4, 2, 8, 5, 7, 0, 9, 0, 7, 6, 9, 2, 3, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 4, 3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3, 0, 3, 4, 4, 8, 2, 7, 5, 8, 6, 2, 0, 6, 8, 9, 6, 5, 5, 1, 7, 2, 4, 1, 3, 7, 9, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The length of row n is A048595(n).  T. D. Noe, May 14 2008
The convention is that the earliest period is displayed.  T. D. Noe, May 14 2008
Conjecture: regarded as a decimal fraction, this number is normal in base 10.  Franklin T. AdamsWatters, Aug 20 2012


REFERENCES

Conway and Guy, The Book of Numbers, p. 160


LINKS

T. D. Noe, Rows n=1..50, flattened
Index entries for sequences related to decimal expansion of 1/n


EXAMPLE

1/2=.5 >0; 1/3=.3333... > 3; 1/5=.2 >0; 1/7=.142857... > 1 4 2 8 5 7; etc.
0; 3; 0; 1,4,2,8,5,7; 0,9; 7,6,9,2,3,0; 5,8,8,2,3,5,2,9,4,1,1,7,6,4,7,0; ...


MATHEMATICA

Clear[d]; d[{{25}, 0}] = {0}; d[{{{n__}}, 0}] := {n}; d[{{{n__, 0}}, k_?Negative}] := Join[Table[0, {k}], Drop[{n}, k+1]]; A048963 = d /@ RealDigits[1/Prime[Range[10]]] (* JeanFrançois Alcover, Dec 10 2014 *)


CROSSREFS

Cf. A048962.
Sequence in context: A177330 A197126 A256987 * A119458 A106356 A091613
Adjacent sequences: A048960 A048961 A048962 * A048964 A048965 A048966


KEYWORD

nonn,base,easy,tabf,nice


AUTHOR

N. J. A. Sloane


STATUS

approved



