

A048932


Let d(n) = number of distinct primes dividing n (A001221). Find smallest t such that d(t)=d(t+1)=...=d(t+n1) but d(t1) and d(t+n) are not = d(t); then a(n)=t.


4



1, 14, 7, 2, 54, 91, 323, 141, 44360, 48919, 218972, 534078, 2699915, 526095, 17233173, 127890362, 29138958036, 146216247221, 118968284928
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) > 10^13 for n from 20 to 22. a(23) = 585927201062. [From Donovan Johnson, Jul 30 2010]


LINKS

Table of n, a(n) for n=1..19.
Eric Weisstein's World of Mathematics, Cubic number.


EXAMPLE

a(3)=7 since 7,8,9 all have d = 1 but d(6) and d(10) != 1 and this is the first run of 3.


CROSSREFS

First occurrence of a run of length exactly n in A001221. Cf. A048971, A048972.
Sequence in context: A118780 A220672 A051655 * A033334 A161914 A162774
Adjacent sequences: A048929 A048930 A048931 * A048933 A048934 A048935


KEYWORD

easy,nonn


AUTHOR

Enoch Haga


EXTENSIONS

More terms from Naohiro Nomoto, Jul 13 2001
a(16)a(19) from Donovan Johnson, Jul 30 2010


STATUS

approved



