login
Discriminants of imaginary quadratic fields with class number 24 (negated).
4

%I #23 Feb 16 2022 11:58:22

%S 695,759,1191,1316,1351,1407,1615,1704,1736,1743,1988,2168,2184,2219,

%T 2372,2408,2479,2660,2696,2820,2824,2852,2856,2915,2964,3059,3064,

%U 3127,3128,3444,3540,3560,3604,3620,3720,3864,3876,3891,3899,3912

%N Discriminants of imaginary quadratic fields with class number 24 (negated).

%H Andy Huchala, <a href="/A048925/b048925.txt">Table of n, a(n) for n = 0..510</a> (first 40 terms from Eric Weisstein)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>

%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>

%t Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 24, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)

%o (Sage)

%o ls = [(QuadraticField(-n, 'a').discriminant(),QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];

%o [-a[0] for a in ls if a[1] == 24] # _Andy Huchala_, Feb 15 2022

%Y Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125.

%K nonn,fini,full

%O 0,1

%A _Eric W. Weisstein_