login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048915 9-gonal pentagonal numbers. 2
1, 651, 180868051, 95317119801, 26472137730696901, 13950766352135999751, 3874504486629442861646551, 2041856512426320950146560501, 567078683619272811125915867157001 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Contribution from Ant King, Dec 20 2011: (Start)

lim(n->Infinity, a(2n+1)/a(2n))=1/2*(277727+60605*sqrt(21)).

lim(n->Infinity, a(2n)/a(2n-1))=1/2*(527+115*sqrt(21)).

(End)

LINKS

Table of n, a(n) for n=1..9.

Eric Weisstein's World of Mathematics, Nonagonal Pentagonal Number.

Index entries for sequences related to linear recurrences with constant coefficients, signature (1,146361602,-146361602,-1,1).

FORMULA

Contribution from Ant King, Dec 20 2011: (Start)

a(n) = 146361602*a(n-2)-a(n-4)+35719200.

a(n) = a(n-1)+146361602*a(n-2)-146361602*a(n-3)-a(n-4)+a(n-5).

a(n) = 1/336*((25+4*sqrt(21))*(5-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(4n-4)+ (25-4*sqrt(21))*(5+sqrt(21)*(-1)^n)*(2*sqrt(7)-3*sqrt(3))^(4n-4)-82).

a(n) = floor(1/336*(25+4*sqrt(21))*(5-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(4n-4)).

G.f.: x*(1+650*x+34505798*x^2+1210450*x^3+2301*x^4) / ((1-x)*(1-12098*x+x^2)*(1+12098*x+x^2)).

(End)

MATHEMATICA

LinearRecurrence[{1, 146361602, -146361602, -1, 1}, {1, 651, 180868051, 95317119801, 26472137730696901}, 9] (* Ant King, Dec 20 2011 *)

CROSSREFS

Cf. A048913, A048914.

Sequence in context: A151736 A010087 A110850 * A002232 A127029 A127030

Adjacent sequences:  A048912 A048913 A048914 * A048916 A048917 A048918

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 03:40 EDT 2014. Contains 240534 sequences.