login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048906 Octagonal heptagonal numbers. 3
1, 297045, 69010153345, 16032576845184901, 3724720317758036481633, 865334473646149974640821781, 201036235582696134090746961388705, 46705140322177796790584365589105966085 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity,a(n)/a(n-1)) = (sqrt(5)+sqrt(6))^8 = 116161+21208*sqrt(30). - Ant King, Dec 30 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..100

Eric Weisstein's World of Mathematics, Octagonal Heptagonal Number.

Index entries for linear recurrences with constant coefficients, signature (232323,-232323,1).

FORMULA

From Harvey P. Dale, Dec 09 2011: (Start)

G.f.: x*(-133*x^2-64722*x-1)/(x^3-232323*x^2+232323*x-1).

a(1)=1, a(2)=297045, a(3)=69010153345, a(n) = 232323*a(n-1)-232323*a(n-2)+a(n-3). (End)

Contribution from Ant King, Dec 30 2011: (Start)

a(n) = 232322*a(n-1)-a(n-2)+64856.

a(n) = 1/480*((17+2*sqrt(30))*(sqrt(5)+sqrt(6))^(8n-6)+(17-2*sqrt(30))*(sqrt(5)-sqrt(6))^(8n-6)-134).

a(n) = floor(1/480*(17+2*sqrt(30))*(sqrt(5)+sqrt(6))^(8n-6)). (End)

MATHEMATICA

CoefficientList[Series[(-133*x^2-64722*x-1)/(x^3-232323*x^2+ 232323*x- 1), {x, 0, 20}], x] (* or *) LinearRecurrence[{232323, -232323, 1}, {1, 297045, 69010153345}, 21] (* Harvey P. Dale, Dec 09 2011 *)

PROG

(MAGMA) I:=[1, 297045, 69010153345]; [n le 3 select I[n] else 232323*Self(n-1)-232323*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 28 2011

CROSSREFS

Cf. A048904, A048905.

Sequence in context: A164946 A204318 A204334 * A251334 A119740 A254193

Adjacent sequences:  A048903 A048904 A048905 * A048907 A048908 A048909

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 18:47 EST 2016. Contains 278745 sequences.